Plant defense and density dependence in the population growth of herbivores.

نویسنده

  • Anurag A Agrawal
چکیده

Long-standing theory has predicted that plant defensive and nutritional traits contribute to the population dynamics of insect herbivores. To examine the role of plant variation in density dependence, I took a comparative approach by conducting density manipulation experiments with the specialist aphid, Aphis nerii, on 18 species of milkweed (Asclepias spp.). The strength of density dependence varied on the plant species. Variation in plant secondary compounds (cardenolides), trichomes, leaf carbon and nitrogen concentrations, and seed mass of the milkweed species predicted the R(max) of aphid populations, while specific leaf weight, carbon concentration, latex, water content, and trichome density were significant predictors of the strength of density dependence. Thus, plant traits that probably evolved for primary and defensive functions contribute to the ecological dynamics of herbivore populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density dependence in insect performance within individual plants: induced resistance to Spodoptera exigua in tomato

Net intraspecific density dependence experienced by insect herbivores at the scale of single plants can be a function both of induced resistance in the plant and other interactions among individual herbivores. Theory suggests that non-linearity in the form of this density dependence can influence the effects of plants on herbivore population dynamics. This study examined both net density depend...

متن کامل

Insect herbivores, density dependence, and the performance of the perennial herb Solanum carolinense.

How insect herbivores affect plant performance is of central importance to basic and applied ecology. A full understanding of herbivore effects on plant performance requires understanding interactions (if any) of herbivore effects with plant density and size because these interactions will be critical for determining how herbivores influence plant population size. However, few studies have cons...

متن کامل

Native insect herbivory overwhelms context dependence to limit complex invasion dynamics of exotic weeds.

Understanding the role of consumers in density-dependent plant population dynamics is a long-standing goal in ecology. However, the generality of herbivory effects across heterogeneous landscapes is poorly understood due to the pervasive influence of context-dependence. We tested effects of native insect herbivory on the population dynamics of an exotic thistle, Cirsium vulgare, in a field expe...

متن کامل

Insect herbivores change the outcome of plant competition through both inter- and intraspecific processes.

Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these p...

متن کامل

Evolution of resistance and tolerance to herbivores: testing the trade-off hypothesis

Background. To cope with their natural enemies, plants rely on resistance and tolerance as defensive strategies. Evolution of these strategies among natural population can be constrained by the absence of genetic variation or because of the antagonistic genetic correlation (trade-off) between them. Also, since plant defenses are integrated by several traits, it has been suggested that trade-off...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American naturalist

دوره 164 1  شماره 

صفحات  -

تاریخ انتشار 2004